Produce Center
Plunge a live crab into a pot of boiling water, and it’s likely to try to scramble out. Is the crab’s behavior simply a reflex, or is it a sign of pain? Many scientists doubt that any invertebrate (or fish) feels pain because they lack the areas in the brain associated with human pain. Others argue this is an unfair comparison, noting that despite the major differences between vertebrate and invertebrate brains, their functions (such as seeing) are much the same. To get around this problem, researchers in 2014 argued that an animal could be classified as experiencing pain if, among other things, it changes its behavior in a way that indicates it’s trying to prevent further injury, such as through increased wariness, and if it shows a physiological change, such as elevated stress hormones. To find out whether crabs meet these criteria, scientists collected 40 European shore crabs (Carcinus maenas), shown in the photo above, in Northern Ireland. They placed the animals into individual tanks, and gave half 200-millisecond electrical shocks every 10 seconds for 2 minutes in their right and left legs. The other 20 crabs served as controls. Sixteen of the shocked crabs began walking in their tanks, and four tried to climb out. None of the control crabs attempted to clamber up the walls, but 14 walked, whereas six didn’t move at all. There was, however, one big physiological difference between the 16 shocked, walking crabs and the 14 control walkers, the scientists report in today’s issue of Biology Letters: Those that received electrical jolts had almost three times the amount of lactic acid in their haemolymph, a fluid that’s analogous to the blood of vertebrates—a clear sign of stress. Thus, crabs pass the bar scientists set for showing that an animal feels pain.mouse Mucin-5 subtype B (MUC5B) ELISA Kit